msc в телефоне что это

Как устроена сеть сотовой связи GSM/UMTS

В комментариях к постам про сеть WiMAX (1, 2) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

image loader

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети — сеть радиодоступа (RAN — Radio Access Network) и сеть коммутации или опорную сеть (CN — Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Сеть радиодоступа

Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа — оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть

Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже — её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂

HLR — Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько — они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки — в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири — 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
— может ли абонент совершать исходящие звонки
— может ли абонент отправлять/принимать SMS
— разрешена ли услуга конференц-связи
— ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC/VLR

MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.
16e8cad6aebb5dbd0e1bb714e6362c81

MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC — AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте — на радиоинтерфейсе.

GMSC — Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN — Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN — Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC — Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями — назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга — через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC — TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS — Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути — довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки — это не есть базовая станция 🙂 Базовая станция похожа на холодильник — шкафчик с модулями, который стоит в специальном месте. Это специальное место — например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Более подробно можно почитать в недавно опубликованной статье про базовые станции.

RNC — Radio Network Controller, контроллер сети радиодоступа. По сути выступает в той же роли, что BSC в GERAN.

NodeB

NodeB, базовая станция в UMTS. Аналог BTS в GSM.

В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).

Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.

Также уже есть идеи для ряда статей на основе вопросов, вызвавших интерес, в комментариях к статьям по телекоммуникациям, пока не буду раскрывать интригу — задавайте интересные вопросы — будут интересные статьи! 😉

UPD: в комментариях отписались эксперты в своих областях, что очень интересно почитать:
1. Ветка про ПО, устанавливаемом на оборудовании;
2. Ветка про отличия наших (СНГшных) сетей и сетей в Европе/США/Азии;
3. Комментрии от пользователя DeSh с поправлениями и уточнениями: тыц, тыц.
Да и вообще в комментариях довольно много всего интересного всплыло помимо выделенных мной комментариев.

Источник

Сети GSM. Взгляд изнутри.

Немного истории

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться здесь ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Взгляните на рис. 1:

pic1

Рис.1 Упрощенная архитектура сети GSM.
1. Международный идентификационный номер подписчика (IMSI)
2. Телефонный номер абонента в обычном смысле (MSISDN)
3. Категория подвижной станции
4. Ключ идентификации абонента (Ki)
5. Виды обеспечения дополнительными услугами
6. Индекс закрытой группы пользователей
7. Код блокировки закрытой группы пользователей
8. Состав основных вызовов, которые могут быть переданы
9. Оповещение вызывающего абонента
10. Идентификация номера вызываемого абонента
11. График работы
12. Оповещение вызываемого абонента
13. Контроль сигнализации при соединении абонентов
14. Характеристики закрытой группы пользователей
15. Льготы закрытой группы пользователей
16. Запрещенные исходящие вызовы в закрытой группе пользователей
17. Максимальное количество абонентов
18. Используемые пароли
19. Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR.
1. Параметры идентификации и шифрования
2. Временный номер мобильного абонента (TMSI)
3. Адрес реестра перемещения, в котором находится абонент (VLR)
4. Зоны перемещения подвижной станции
5. Номер соты при эстафетной передаче
6. Регистрационный статус
7. Таймер отсутствия ответа
8. Состав используемых в данный момент паролей
9. Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR.
1. Временный номер мобильного абонента (TMSI)
2. Идентификаторы области расположения абонента (LAI)
3. Указания по использованию основных служб
4. Номер соты при эстафетной передаче
5. Параметры идентификации и шифрования
Таблица 3. Полный состав временных данных, хранимых в VLR.

Регистрация в сети.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM. Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover.

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA, что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover`а:

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC, например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов «находит» нужный коммутатор по набранному номеру мобильного абонента MSISDN, который содержит код страны и сети).

pic2

Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Тип ошибки Частота Тип сигнала
Номер абонента занят 425±15 Гц 500мс гудок, 500 мс пауза
Перегрузка сети 425±15 Гц 200мс гудок, 200 мс пауза
Общая ошибка 950±50Гц 1400±50Гц 1800±50Гц Тройной гудок (длительность каждой части 330 мс), 1 с пауза
Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Автор благодарит компанию Адмирал+ за помощь в подготовке материала.

Источник

Найти и обезвредить. Как раскрыть местоположение мобильного абонента

В сетях мобильной связи возможно осуществление довольно специфичных атак. Об одной из них — раскрытии местоположения абонента в реальном времени с точностью до определения соты — пойдет речь в данной статье. Я не указываю точность в более привычных единицах измерения, т. к. размер соты не является величиной постоянной. В плотных городских застройках сота может обеспечивать покрытие порядка сотен метров, а в условиях лесов, полей и рек междугородной трассы — нескольких километров.

Элементы системы

image loader

Рисунок 1 (по клику открывается в полном размере)

Для начала проведу небольшое введение в структуру сотовой сети на примере стандарта GSM. Упрощенная схема стандарта приведена на рисунке 1.

Покрытие обеспечивается базовыми станциями (Base Station, BS), каждая из которых, как правило, имеет несколько антенн, направленных в разные стороны. Антенна обеспечивает радиопокрытие соты, каждая сота имеет свой идентификатор (Cell Identity, CI). Базовые станции группируются в географические зоны (Location Area, LA). Группировка происходит чаще всего по территориальному принципу. Идентификатор такой группы называется LAC (Location Area Code). На рисунке 1 каждая базовая станция обеспечивает покрытие трех секторов.

Базовые станции подсоединяются к контроллеру базовых станций (Base Station Controller, BSC). В самом простом варианте один LAC соответствует одному BSC. Именно такое назначение LAC показано на примере (рисунок 1). Для наглядности LAC выделены разными цветами.

Территория, покрываемая одним LAC, зависит от плотности населения. В Москве, в пределах МКАД, может быть несколько десятков LAC, а в небольшом регионе центральной полосы России разделение на LAC может быть таким: один LAC покрывает областной центр, второй LAC покрывает всю остальную территорию области.

Все контроллеры BSC подключаются к коммутатору (Mobile Switching Center, MSC). По сути, MSC представляет собой обычный коммутатор голосовых телефонных вызовов с аппаратно-программным расширением для обеспечения функций мобильности абонентов. В эпоху широкого распространения IP следует напомнить, что MSC оперирует коммутацией цепей (Circuit Switched) согласно установленным в нем статичным таблицам маршрутизации на основе привычной нам телефонной нумерации.

Регистр местоположения визитных абонентов (Visited Location Register, VLR) функционально считается отдельным элементом сети, но фактически всегда интегрирована с MSC. В базе данных VLR содержится информация об абонентах, которые в данный момент находятся в зоне действия своего MSC. И раз уж тема статьи о местоположении абонента, то стоит упомянуть, что для каждого абонента в БД VLR хранится информация о текущем идентификаторе LAC, и идентификаторе той соты (CI), которая была при последнем радиоконтакте мобильного телефона с сетью. То есть, если абонент передвигается по территории покрытия одного LAC, не совершая и не принимая вызовов, в базе данных VLR информация о его местоположении не меняется. В общем случае, в сети может быть несколько узлов MSC/VLR. В примере на рисунке 1 показано два таких узла.

Еще два функциональных узла — регистр местоположения домашних абонентов (Home Location Register, HLR) и центр аутентификации (Authentication Center, AuC) — размещаются физически в едином модуле. HLR/AuC хранит профили абонентов своей сети. В профиле содержится следующая информация: телефонный номер абонента, уникальный идентификатор SIM-карты (International Mobile Subscriber Identity, IMSI), ключи для обеспечения безопасности, категория абонента (предоплатная система расчетов /постоплатная система расчетов), список разрешенных и запрещенных услуг, адрес биллинг-центра (для абонентов предоплатной системы), адрес MSC/VLR, в зоне действия которого находится абонент в настоящий момент. Этот же профиль с некоторыми изменениями копируется в VLR, когда абонент регистрируется в зоне его действия.

Шлюзовой коммутатор (Gateway MSC, GMSC) является приемной точкой для входящих вызовов. Он на основе информации, полученной из HLR, маршрутизирует вызов на тот коммутатор, в зоне действия которого находится вызываемый абонент.

В процессе установления вызова, отправки SMS и прочих транзакций, узлы связи обмениваются между собой сигнальными сообщениями. Стек протоколов, набор сообщений и их параметров в сетях телефонной (не только мобильной) связи называется Системой сигнализации №7 (Signaling System 7, SS7). Все протоколы SS7 открыты и доступны для ознакомления и изучения на сайтах таких международных организаций, как МСЭ-Т, 3GPP, GSMA. Описанная далее атака опирается на сообщения SS7.

Атака

Разумеется, данную атаку не сможет совершить любой человек с улицы. Для осуществления атаки звезды должны расположиться в правильном порядке на небосводе. А именно:

image loader

Рисунок 2 (по клику открывается в полном размере)

1. Мобильный телефон регистрируются в сети одного из украинских мобильных операторов. В какой-то момент абонент входит в зону покрытия LAC 41800 со стороны сектора CI 22C0 и продолжает движение вплоть до сектора CI 22CF. Что же в это время происходит в сети оператора? Когда телефон оказывается в зоне покрытия LAC 41800, то инициируется процедура Location Update, обновляя в базе данных VLR значения LAC и CI. По мере движения нашего коллеги до сектора CI 22CF в базе данных VLR не происходит более никаких изменений.

2. Мы хотим узнать, на самом ли деле у наших сотрудников идут сложные переговоры. И в какой-то момент мы формируем SMS-сообщение с атрибутом Type-0 и отправляем на номер одного из коллег. Напоминаю, что по легенде он в это время находится в секторе CI 22CF.

3. У SMS-сообщения Type-0 есть другое название — SMS-пинг. Это сообщение не отображается на экране мобильного телефона и не сохраняется в списке принятых SMS. Кроме того, оно осуществляет действия, которые абонент не планировал, а именно, производит обновление атрибутов местоположения в базе данных VLR. Теперь в VLR хранится актуальное значение сектора, в котором прибывает абонент, то есть CI 22CF.

4. Мы уже начали свою активность, однако еще не получили ни байта результата. Информация о местоположении абонента хоть и обновилась, но она находится в недрах оборудования оператора, и чтобы выудить данные, мы продолжаем наши исследования. На следующем шаге формируем сигнальное сообщение sendRoutingInfoForSM, где в качестве параметра указывается мобильный номер нашего сотрудника, и отправляем это сообщение на HLR оператора.

5. В мире телекома принято доверять друг другу, особенно запросам, пришедшим по сетям SS7, и HLR оператора не является исключением из этого правила. На рисунке 3 показана выдержка из трассировки. HLR находит в своих базах данных идентификатор IMSI абонента (1) и адрес MSC/VLR (2), в зоне действия которого находится абонент с заданным номером, и, не подозревая подвоха, сообщает своему «собеседнику» эти данные. Здесь можно обратить внимание на значения некоторых цифр. Первые три цифры идентификатора IMSI обозначают код страны абонента (Mobile Country Code, MCC). Код 250 закреплен за Россией (1). Адрес коммутатора предоставляется в более привычной для нас телефонной нумерации, где 380 — международный телефонный код Украины (2).

image loader

На этом шаге можно сделать небольшую паузу. Дело в том, что в сети существуют сервисы, которые на этом останавливаются и выдают своим пользователям информацию о местоположении любого мобильного абонента с точностью до мобильного коммутатора.

image loader

На рисунке 4 показан фрагмент скриншота с результатами поиска того же самого человека. Тут мы видим номер абонента (1). Кроме того, сервис раскрывает идентификатор IMSI (2), который вообще-то является конфиденциальной информацией и должен храниться оператором за семью печатями. Следом нам показан номер сервис-центра, где находится абонент (3). Фактически это урезанный адрес мобильного коммутатора. В России по номеру сервис-центра можно определить регион нахождения абонента, т. к. адресация коммутаторов совпадает с региональной телефонной нумерацией. К сожалению, для украинских мобильных операторов мне не удалось найти такого соответствия.

6. Наши поиски продолжаются. Теперь мы формируем сообщение provideSubscriberInfo, где в качестве параметра задаем идентификатор IMSI, и отправляем это сообщение на адрес мобильного коммутатора. Все нужные параметры (IMSI и адрес MSC/VLR) мы получили на предыдущем шаге.

7. И опять мы сыграем на всеобщем доверии. Коммутатор воспринимает сообщение как вполне легальное и с удовольствием сообщает в ответ идентификаторы сети MCC/MNC, значение LAC и недавно обновленное значение сектора CI.

Теперь посмотрим на трассировку (рисунок 5). Все значения, нужные нам для пеленгации, получены:

Пока это только набор цифр, из которого мы сможем узнать страну по MCC — код 255 закреплен за Украиной. Пока все сходится. Для финального выстрела открываем сервис для определения координат базовой станции, коих в сети можно найти немало (рисунок 6). И что же мы видим? Это не Киев, а Феодосия, причем сектор обслуживает не городскую черту, а морское побережье с пляжами! Теперь ясно, чем наши коллеги так долго заняты в командировке 🙂

image loader

Заключение

В качестве пользователей описанного в статье «сервиса» можно представить криминальных элементов, промышленных шпионов, частных детективов… Но остается вопрос: кто и каким образом может реализовать подобного рода атаки?

В первую очередь, такая возможность есть у технических специалистов операторов связи, причем сам оператор может находиться в любой стране мира.

Во-вторых, для реализации сервиса может быть специально создана компания с получением необходимых лицензий, закупкой оборудования и подключением к SS7 обязательно с возможностью работы протокола MAP. Денежные затраты на реализацию такого варианта в России будут исчисляться круглыми суммами и вряд ли смогут окупиться.

Третий вариант — взлом сети управления оператора и внедрение «жучка» в его существующую инфраструктуру.

А у правоохранительных органов имеются свои средства оперативно-розыскных мероприятий (СОРМ), в том числе с функцией поиска местоположения.

Автор: Сергей Пузанков, исследовательский центр Positive Research.

P. S. Хочу выразить благодарность отделу анализа безопасности сетевых устройств Positive Technologies и Вере Красковой, которая отдыхала Крыму во время наших исследований и выступила в роли пеленгуемого абонента 🙂

Источник

Telefonu.top - справочник телефонных номеров
0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии