Что такое количество ядер процессора в телефоне, за что оно отвечает, какую функцию выполняет? На что влияет количество ядер в смартфоне? Какое самое большое количество ядер в смартфоне?
Короткое повествование на простом языке о ядрах мобильных процессоров, их функциях и необходимом количестве.
Для любого человека, который решается обзавестись новеньким смартфоном, основным критерием выбора является не только цена, но и мощность гаджета. Если перейти на сайт какого-нибудь интернет магазина и открыть технические характеристики смартфонов, то среди них можно увидеть такое определение, как «процессор».
Многим, даже технически неграмотным пользователям, данная деталь знакома и они имеют представление о том, какую функцию он выполняет. Однако стоящие рядом с ним слова «двухъядерный» или «четырехъядерный» вызывают у многих недоумение.
В нашей статье мы поговорим о том, что такое ядро процессора в смартфоне, за что оно отвечает и правдиво ли мнение, что чем больше ядер в процессоре, тем мощнее телефон.
Изображение 1. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Что такое процессор в телефоне?
Изображение 2. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Что такое ядра процессора в смартфоне и за что они отвечают?
Изображение 3. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
На что влияет количество ядер в смартфоне?
Изображение 4. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Какое самое большое количество ядер в смартфоне?
Сколько ядер в телефоне, смартфоне лучше?
Изображение 5. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Изображение 6. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
ВИДЕО: Почему больше ядер в мобильном процессоре не значит лучше?
Источник
Что такое ядро в телефоне? что такое ядра процессора —
История
Когда-то процессоры обладали всего лишь одним ядром, однако технологии не стоят на месте, а совершенствуются с каждым днем. Именно поэтому сейчас нередко можно встретить телефоны как четырехъядерные, так и восьмиядерные, а в некоторых случаях можно наткнуться даже на шестнадцатиядерные аппараты. И все же, что такое ядро в телефоне? Во времена одноядерных процессоров возникала проблема перегрева аппарата из-за сильной нагрузки на единственное имеющееся ядро, поэтому инженерами было решено расширить возможности процессоров для устранения этой проблемы.
Особенности процессоров в разных ОС
В настоящее многообразие процессоров можно найти, прежде всего, в коммуникаторах под управлением Android OS. Эта операционная система является открытой, то есть, любой производитель может использовать её в любых устройствах. Поэтому и применяться в Android-устройствах могут как сверхбюджетные одноядерные процессоры малоизвестных компаний с рабочей частотой ниже 1 ГГц, так и ультрамощные четырёхъядерные чипы (причём, ARM утверждает, что это ещё не предел) с частотой выше 2 ГГц (такими будут процессоры Qualcomm Snapdragon 800). Похоже, что подобная ситуация будет складываться в дальнейшем и с новыми ОС вроде Canonical Ubuntu или Mozilla Firefox OS, чей исходный код также доступен всем желающим.
Подобно Android, дела схожим образом обстоят и у Microsoft Windows Phone, но с некоторыми существенными отличиями. Дело в том, что Microsoft намеренно устанавливает рамки для устройств на своей операционке, несмотря на то, что производители всё равно имеют довольно широкий выбор. Возможно, это даже к лучшему: с одной стороны, компании не могут выпустить WP-смартфон с слишком низкими характеристиками, на котором подтормаживать будет даже стандартный интерфейс, а с другой стороны – конечные потребители не будут переплачивать за “лишние” гигагерцы и ядра, которые будут простаивать без дела. Вообще, причина того, что Android-смартфонам необходимы быстрые четырёхъядерные процессоры, в то время как другие операционки работают хорошо и на относительно “средних” двухъядерных кроется гораздо глубже, нежели в производительности “железа”, но затрагивать принципы работы ОС в рамках этого материала мы не будем. К чему всё это? Дело в том, что обратной стороной политики Microsoft является маркетинг: большинство пользователей, далёких от мира высоких технологий, скорее купят смартфон с процессором с большим количеством ядер и большей тактовой частотой, что предлагают именно производители Android-коммуникаторов.
Особняком стоят операционные системы Apple iOS и Blackberry OS. Компании Apple и Blackberry разрабатывают эти ОС только для собственных устройств и планомерно увеличивают их производительность в соответствии с реальными потребностями. В результате, современные трёхмерные игры идут с максимальным качеством графики на процессорах, которые в случае с Android OS считались бы решением для среднего сегмента. Пользователи указанных операционок, в свою очередь, не задумываются о мощности используемых чипов, зная, что покупая последнее устройство в линейке не будут испытывать проблем с производительностью.
Правда или нет: много ядер смартфону не нужно
Использование в смартфонах четырёхъядерных процессоров уже считается едва ли не моветоном: все современные флагманы обязаны иметь минимум восемь ядер, а лучше все десять. Но действительно ли мобильным гаджетам нужны такие чипсеты, или всё дело в маркетинговой гонке между производителями? Мы собираемся сравнить нагрузку на процессор в различных задачах на примере смартфона Honor 8 Pro с чипсетом Kirin 960 и выяснить, действительно ли Android задействует все вычислительные мощности гаджета?
Различия между ядрами в процессоре компьютера и телефона
Некоторые владельцы смартфонов и планшетов ошибочно полагают, что процессор мобильного устройства сопоставим или превосходит аналоги, используемые в настольных ПК и ноутбуках. В качестве приведенных аргументов указывается сопоставимое количество ядер, близкая частота или общие возможности. К примеру, на телефоне видео в разрешении 4К воспроизводится плавно, а на сравнимом ПК или ноутбуке – с задержкой.
Если рассуждать здраво, отдельные задачи на телефоне выполняются быстрее, чем на компьютере. Это объясняется разными факторами, включая задержки в используемом оборудовании, техническое состояние и возраст. А ещё важный фактор – программная оптимизация. В целом же лучшие современные мобильные процессоры с трудом конкурируют с настольными версиями середины прошлого десятилетия. А всё потому, что это два совершенно разных процессора, в плане конструкции и назначения.
Настольные процессоры построены на архитектуре x86, а мобильные на ARM. Под архитектурой процессора стоит понимать определенный набор команд, что способен выполнять процессор. В x86 используется тип процессорной архитектуры – CISC или «компьютер с полным набором команд», а в ARM используется RISC или «компьютер с сокращённым набором команд». В CISC длина набора команд не фиксирована, что позволяет задать для процессора несколько действий сразу. В RISC длина набора команд ограничена, а действия выполняются поочередно. При этом скорость исполнения команд быстрее за счет простоты.
Архитектура х86 изначально разрабатывалась с целью получения максимальной производительности. В ARM при разработке ориентировались на минимальные затраты при производстве, низкое энергопотребление и тепловыделение. Соответственно в ARM используются только необходимые инструкции, примерно 30% в сравнении с х86. Поэтому некоторые расчеты поддерживаемые процессорами на х86, в ARM недоступны. В совокупности с разницей в масштабировании, объеме кэш памяти и частоте, самые лучшие ARM процессоры едва догоняют Intel Celeron начального уровня.
С другой стороны чипы на ARM меньше в размерах, не нуждаются в массивном охлаждении, а ещё дешевле и компактны. В одном корпусе помимо процессорных ядер умещается ещё и графический ускоритель, сигнальный процессор, модемы и модули для управления беспроводных сетей. А энергопотребление минимум в 10 раз ниже самого экономичного настольного аналога.
Результаты теста PC Mark.
Что такое ядра процессора в смартфоне и за что они отвечают?
Изображение 3. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Ядра и возможности
С количеством ядер все достаточно легко. Раньше все производители устройств для вычислительной техники гнались за увеличением частоты, а все команды на устройствах выполнялись одна за другой. Затем настало время, когда команды стали выполняться параллельно. Частота процессора далеко не безгранична, а каждое его ядро имеет определенную конфигурацию, позволяющую выполнять несколько функций в один и тот же момент времени, то есть параллельно. Самые хорошие модели способны в одно и то же время совершать несколько миллионов различных операций. И все это стало возможным за счет наличия не одного, а нескольких ядер у процессора. Если раньше потоки данных занимали очередь для своей обработки, что очень сильно било по скорости работы устройства, то сейчас такой проблемы нет.
Какое самое большое количество ядер в смартфоне?
Ядра бывают разные
Производители смартфонов используют ядра (архитектуру), разработанные в компании Arm. Дизайн чипов при этом проектируют отдельно: Apple делает свое, Samsung, Huawei, Qualcomm и MediaTek — свое.
Одно и то же ядро (например, Cortex-A77 — самый актуальный вариант) может работать на разной частоте в зависимости от устройства и собственной модификации. Ядра объединяют в кластеры — те самые «наборы».
От дизайна зависит, сколько может быть ядер в одном кластере. Общее количество ядер в одном процессоре Android-смартфона обычно составляет восемь (в самых свежих iPhone — шесть).
«Количество ядер не указывает на производительность смартфона»
big.LITTLE, в свою очередь, расшифровывается просто: есть ядра более производительные (big) и менее производительные (little). Смартфон должен обеспечить плавное переключение на лету между кластерами в зависимости от задач, выполняемых мобильником. Это сложно и иногда работает со сбоями. Логика инженеров Apple и их возможности немного иные. Также есть и другие нюансы, объективно выделяющие «яблоко» из остальных (часто ли вы видели тормозящий iPhone?).
В качестве примера приведем флагманский процессор Snapdragon 855+ для Android-смартфонов. Он использует чип с одним высокопроизводительным ядром до 2,84 ГГц, двумя производительными до 2,42 ГГц, построенными на базе Cortex-A76 (они же кастомные Kryo 485 Gold и Kryo 485 Gold Prime), и четырьмя энергосберегающими до 1,8 ГГц на базе Cortex-A55 (Kryo 485 Silver). Итог — три кластера под разную интенсивность работы.
И, как мы видим, ядра, базируясь на одной архитектуре, имеют модификации, что отражается на их тактовой частоте.
Еще один момент: количество ядер не указывает прямо на производительность смартфона. Поэтому восемь слабых ядер уступят компоновке из четырех мощных и четырех малопроизводительных.
Важно также, как производитель позиционирует смартфон. Поэтому заморачиваться по поводу того, какой процессор установлен в свежем флагмане, особенно не стоит: наверняка там будет адекватное решение (актуально для зарекомендовавших себя брендов).
Что такое Версия ядра?
Версия ядра указана в настройках смартфона. … В данном случае идет речь о ядре как о центральной части операционной системы, которая обеспечивает приложениям координированный доступ к ресурсам устройства, как то: память, процессорное время, аппаратное обеспечение и т. д.
Какую роль играет количество ядер в телефоне?
Как мы уже выяснили, ядра помогают разгрузить процессор, снизить теплоотдачу и увеличить его скорость. Таким образом, чем больше в установленном на ваш телефон процессоре ядер, тем больше действий Вы сможете выполнять одновременно.
Оптимизация программной и аппаратной частей
Лучше всего обстоят дела у процессоров Apple серии A. Компании не приходится распыляться на сонм моделей, ОС полностью своя, приложения пишутся под ограниченный набор устройств, а не тысячи разных.
А некоторые известные компании переболели «детской болезнью»: Huawei настрадалась с Kirin, например, то и дело возникают вопросы к фирменному чипу Samsung Exynos, что подталкивает некоторых покупателей искать смартфоны Samsung на базе Snapdragon. MediaTek постепенно исправляется.
Можно использовать самые последние технологии и техпроцессы, но не достичь гармонии: процессор считается идеальным в проекте, уделывает остальных в тяжелых приложениях, набирает уйму баллов в тестах, а потом не справляется с собственной программной оболочкой.
Сколько ядер в телефоне, смартфоне лучше?
Изображение 5. Что такое ядро центрального процессора в телефоне, за что оно отвечает и какую функцию выполняет?
Источник
Зачем нужны ядра в телефоне?
Изначально процессоры обладали всего одним ядром, на которое возлагались все задачи. Постепенно чипы становились мощнее – они получали возможность обрабатывать больше информации за одну единицу времени. Из-за этого они сильно нагревались, что стало настоящей проблемой. Было принято решение разделить чип на несколько ядер, в результате чего их производительность возросла, а нагрев так и остался на прежнем уровне, так как каждое ядро обрабатывало параллельно большой поток информации. Позже появились четырех-, шести- и даже восьмиядерные процессоры.
Так вот ядра в телефоне (вернее – в процессоре) нужны для параллельной (одновременной) обработки потока информации. Возложить сразу большой объем данных для обработки на одно ядро не удается.
Больше – значит лучше?
Ошибочно полагать, что чем больше ядер в телефоне, тем лучше. На самом деле это не так. Большинство четырехъядерных процессоров работают по следующему принципу: 2 ядра являются энергосберегающими и работают только в том случае, когда нагрузка на чип небольшая. Они расходуют небольшое количество энергии, и их ресурса достаточно для поддержки шаблонных задач (прослушивание музыки, просмотр видео, серфинг в интернете). Когда пользователь запускает игру, то подключаются дополнительные мощные ядра – их ресурс очень высок, но они потребляют много энергии, из-за чего аккумулятор разряжается быстро.
Чаще всего четырехъядерные процессоры могут работать на полную мощность и задействовать сразу все четыре ядра. Что касается «восьмиядерников», то эти работают как два отдельных «четырехъядерника»: при слабых нагрузках активными являются энергосберегающие ядра, при высоких подключаются мощные, а слабые отключаются. Но уже сегодня существуют процессоры, которые могут одновременно задействовать все восемь ядер – их производительность поражает.
Следовательно, современные процессоры поделены на ядра в большей степени для повышения энергоэффективности, а не производительности. И это разумное решение, ведь без необходимости нет нужны «гонять» сильные ядра, когда с простыми задачами сможет справиться процессор, потратив при этом небольшое количество энергии.
Сам термин «восьмиядерный» вводит в заблуждение пользователя, который полагает, что такой чип является более мощным. Это не всегда справедливо.
Источник
Процессоры в мобильных гаджетах — какие бывают и что лучше
Содержание
Содержание
На рынке десктопных процессоров все достаточно понятно — здесь лидерство делят компании Intel и AMD. Если же говорить о мобильных процессорах, то тут все несколько сложнее. Каждый из брендов предлагает свои модели, причем некоторые из них эксклюзивно стоят только в конкретных гаджетах. Мы расскажем о ведущих производителях мобильных процессоров и рассмотрим их ассортимент.
В чем разница между мобильными и десктопными процессорами?
Если не вдаваться в многочисленные технические особенности, то главным отличием можно назвать архитектуру.
Архитектура — это совокупность принципов построения, общая схема расположения элементов на кристалле и схема взаимодействия ПО с чипом.
В десктопных моделях используется архитектура x86/x64, однако инженерам так и не удалось добиться требуемой энергоэффективности, несмотря на все попытки. Процессоры потребляли слишком много энергии из-за необходимости дополнительных преобразований, поэтому не подходили для мобильной техники. В итоге разработчики предложили использовать новую архитектуру RISC (reduced instruction set computer) вместо существующей CISC (complex instruction set computing).
В CISC-архитектуре каждая команда имеет свой формат и длину, из-за чего процессору требуется больше времени и ресурсов на обработку. В RISC-архитектуре команды имеют не только общую длину, но и формат. Благодаря этому процессоры на RISC более энергоэффективны, быстрее обрабатывают команды и требуют меньшего объема ОЗУ, что делает их практически идеальным кандидатом для мобильной электроники.
Развитием RISC занялась компания ARM Limited, которая представила усовершенствованную архитектуру под названием ARM. Стоит отметить, что эта компания не только создает собственные вариации процессоров, но и предоставляет лицензии на свои разработки. В итоге на базе предоставленных ARM ядер крупные бренды создают авторские топологии и фирменные процессоры, о которых мы и поговорим далее.
Apple
Разрабатывать процессоры с собственной топологией компания Apple начала лишь в 2010 году, презентовав свой первый iPad. Модель процессора A4 построена на ядре ARM Cortex-A8 и стала началом всей линейки, которая продолжается до сегодняшнего дня. Кстати, в смартфонах первого поколения до iPhone 4 в Apple использовали микропроцессоры от Samsung.
С 2010 года Apple выпустили более 15 моделей в линейке, каждая последующая была усовершенствованием предыдущей и, как правило, устанавливалась в новой модели iPhone или iPad.
Модель | Число транзисторов | Число ядер | Техпроцесс | Устройства |
A4 | ? | 1 | 45 нм | iPadi, Phone 4, iPod touch 4G |
A5 | ? | 2 | 45 и 32 нм | iPad 2, iPhone 4S, iPod Touch 5G, iPad Mini. |
A5X | ? | 2 | 45 нм | iPad 3 |
A6 | ? | 2 | 32 нм | iPhone 5, iPhone 5c |
A6X | ? | 2 | 32 нм | iPad 4-generation |
A7 | ≈ 1 млрд | 2 | 28 нм | iPhone 5S, iPad Air, iPad mini, iPad mini 3 |
A8 | ≈ 2 млрд | 2 | 20 нм | iPhone 6 и 6 Plus, iPod touch 6G, iPad mini 4, HomePod |
A8X | ≈ 3 млрд | 3 | 20 нм | iPad Air 2 |
A9 | ≈ 2 млрд | 2 | 14 и 16 нм | iPhone 6S и 6S Plus, iPhone SE, iPad 5 |
A9X | ? | 2 | 16 нм | iPad Pro |
A10 | 3,28 млрд | 4 | 16 нм | iPhone 7 (Plus), iPad 6, iPad 7, iPod Touch 7 |
A10X | ≈ 4 млрд | 6 | 10 нм | iPad Pro (10,5; 12,9) |
A11 | 4,3 млрд | 6 | 10 нм | iPhone 8 (Plus), iPhone X |
A12 | 6,9 млрд | 6 | 7 нм | iPhone XS, iPhone XS Max, iPhone XR |
A12X | ≈ 10 млрд | 8 | 7 нм | iPad Pro (2018) |
A12Z | ≈ 10 млрд | 8 | 7 нм | iPad Pro (2020) |
A13 | 8,5 млрд | 6 | 7 нм | iPhone 11 (все), iPhone SE 2, iPad 9th Gen. |
A14 | 11,8 млрд | 6 | 5 нм | iPad Air (4th Gen), iPhone 12 (все) |
A15 | 13 млрд | 6 | 5 нм | iPad mini (6th Gen). iPhone 13 (все) |
Компания Apple была одной из первых, кто понял все преимущества RISC-архитектуры в мобильном сегменте. В паре с ОС собственной разработки инженерам удавалось выпускать одни из самых мощных моделей, которые на 50–100 % обгоняли по производительности топовые продукты других брендов.
В среднем с каждым новым поколением процессоров Apple удавалось наращивать производительность от 1,3 вплоть до 2 раз.
Более того, в определенных тестах процессоры серии A не уступают в производительности десктопным моделям, показывая схожие или даже лучшие результаты. Мощнейшим прорывом можно назвать Apple M1 — это система на кристалле ARM-архитектуры, которая используется уже не только в iPad Pro, но и в последних MacBook.
За графику в мобильных процессорах до A11 отвечали ускорители от PowerVR, а, начиная с A11, инженеры Apple ставили собственное GPU, но используя лицензированное ПО.
Компанию Apple без преувеличения можно назвать одним из лидеров в области мобильных процессоров. Многолетний опыт и подгонка «железа» под операционную систему позволяют получать высочайшие результаты. Однако процессоры от Apple устанавливаются исключительно в технику этого бренда.
Qualcomm
Конкуренцию «купертиновцам» составляют инженеры из компании Qualcomm — одной из крупнейших фирм по разработке и исследованию беспроводных средств связи и систем на кристалле. В частности, компания известна процессорами линейки Snapdragon. Производство первых SoC фирма начала в 2007 году, предоставляя процессоры для HTC, Acer, Asus, LG, Huawei и других брендов. В период с 2007 по 2012 годы были созданы четыре поколения моделей S1–S4 по техпроцессу 28 нм и больше.
В поколениях до S4 архитектуру разрабатывали на базе собственных ядер, которые являются модифицированными версиями ARM-Cortex.
С 2013 года компания представила пять основных линеек своих процессоров, нацеленных на разные классы устройств:
Источник